2,196 research outputs found

    Packaging biological cargoes in mesoporous materials: Opportunities for drug delivery

    Get PDF
    Introduction: Confinement of biomolecules in structured nanoporous materials offers several desirable features ranging from chemical and thermal stability, to resistance to degradation from the external environment. A new generation of mesoporous materials presents exciting new possibilities for the formulation and controlled release of biological agents. Such materials address niche applications in enteral and parenteral delivery of biologics, such as peptides, polypeptides, enzymes and proteins for use as therapeutics, imaging agents, biosensors, and adjuvants.Areas covered: Mesoporous silica Santa Barbara Amorphous-15 (SBA-15), with its unique, tunable pore diameter, and easily functionalized surface, provides a representative example of this new generation of materials. Here, we review recent advances in the design and synthesis of nanostructured mesoporous materials, focusing on SBA-15, and highlight opportunities for the delivery of biological agents to various organ and tissue compartments.Expert opinion: The SBA-15 platform provides a delivery carrier that is inherently separated from the active biologic due to distinct intra and extra-particle environments. This permits the SBA-15 platform to not require direct modification of the active biological therapeutic. Additionally, this makes the platform universal and allows for its application independent of the desired methods of discovery and development. The SBA-15 platform also directly addresses issues of targeted delivery and controlled release, although future challenges in the implementation of this platform reside in particle design, biocompatibility, and the tunability of the internal and external material properties. Examples illustrating the flexibility in the application of the SBA-15 platform are also discussed

    Project on comparison of structural parameters and electron density maps of oxalic acid dihydrate

    Get PDF
    Results obtained from four X-ray and five neutron data sets collected under a project sponsored by the Commission on Charge, Spin and Momentum Densities are analyzed by comparison of thermal parameters, positional parameters and X - N electron density maps. Three sets of theoretical calculations are also included in the comparison. Though several chemically significant features are reproduced in all the experimental density maps, differences in detail occur which caution against overinterpretation of the maps. Large differences between vibrational tensor elements Uij are observed which can often not be corrected by the scaling of all temperature parameters in a set. Positional parameters are reproducible to precisions of 0.001 Å or better. The biggest discrepancies between theoretical and experimental deformation density maps occurs in the lone-pair regions where peaks are higher in the theoretical maps. However, this comparison may be affected by inadequacies in the thermal-motion formalism which must be invoked before experimental and theoretical maps can be compared in a quantitative way

    Achieving ultra-high platinum utilization via optimization of PEM fuel cell cathode catalyst layer microstructure

    Get PDF
    Inefficient usage of expensive platinum catalyst has plagued the design of PEM fuel cells and contributed to the limited production and use of fuel cell systems. Here, it is shown that hierarchical optimization can increase platinum utilization 30-fold over existing catalyst layer designs while maintaining power densities over 0.35 W/cm2. The cathode catalyst layer microstructure is optimized with respect to platinum utilization (measured as kilowatts of electricity produced per gram of platinum). A one-dimensional agglomerate model that accounts for liquid water saturation is used in this study. The cathode catalyst layer microstructure is optimized by manipulating the platinum loading (m Pt), platinum-to-carbon ratio (Pt|C), and catalyst layer void fraction View the MathML source(ΔVcl). The resulting catalyst layer microstructure features ultra-low platinum loadings of roughly 0.01 mg/cm2

    Transition from Knudsen to molecular diffusion in activity of absorbing irregular interfaces

    Full text link
    We investigate through molecular dynamics the transition from Knudsen to molecular diffusion transport towards 2d absorbing interfaces with irregular geometry. Our results indicate that the length of the active zone decreases continuously with density from the Knudsen to the molecular diffusion regime. In the limit where molecular diffusion dominates, we find that this length approaches a constant value of the order of the system size, in agreement with theoretical predictions for Laplacian transport in irregular geometries. Finally, we show that all these features can be qualitatively described in terms of a simple random-walk model of the diffusion process.Comment: 4 pages, 4 figure

    Dynamique quantique ultra-rapide de nanogouttes d'hélium superfluide dopées

    Get PDF
    In this thesis we investigate two aspects of the dynamics of atomic impurities interacting with superfluid helium (He) nanodroplets, namely the photo-excitation of alkalis on a nanodroplet and the doping process of nanodroplets hosting quantised vortices with noble gas atoms. For the theoretical investigations we use He density functional theory and its time-dependent version. The first aspect involves a joint experimental and theoretical collaboration that focusses on the photo-excitation of the alkali rubidium (Rb). Alkalis are a very interesting probe of He droplets since they reside in their surface region, where it has been argued that almost 100% Bose-Einstein condensation could be achieved due to a density that is lower than in bulk superfluid He. In our simulations we find that states excited to the 5p and 6p manifold desorb at very different timescales, separated by 2 orders of magnitude (~100 ps and ~1 ps for 5p and 6p respectively). This is in good agreement with experimental results where the desorption behaviour of photo-excited Rb atoms is determined using a femtosecond pump-probe scheme. However, in our simulations excitation to the 5pPi_{3/2}-state results in a surface-bound RbHe exciplex, contrary to the experimental case where the RbHe exciplex desorbs from the droplets surface. Introducing spin-relaxation from Pi_{3/2} to Pi_{1/2} into the simulations, the RbHe exciplex is able to desorb from the droplet's surface, which resolves this contradiction. The second aspect concerns a purely theoretical investigation that is inspired by recent work of Gomez and Vilesov et al., where quantised vortices were visualised by doping He nanodroplets with silver atoms, subsequently "soft landing" them on a carbon screen. Electron-microscope images show long filaments of silver atom clusters that accumulated along the vortex cores. Also the formation of quantum-vortex lattices inside nanodroplets is evidenced by using X-ray diffractive imaging to visualise the characteristic Bragg patterns from xenon (Xe) clusters trapped inside the vortex cores. First, head-on collisions between heliophilic Xe and a He nanodroplet made of 1000 He atoms are studied. The results are then compared with the results of a previous study of an equivalent kinematic case with cesium (Cs), which is heliophobic. Xe acquires a "snowball" of He around itself when it traverses the droplet and much more kinetic energy is required before Xe is able to pierce the droplet completely. When it does, it takes away some He with it, contrary to the Cs case. Next, collisions between argon (Ar)/Xe and pristine superfluid He nanodroplets are performed for various initial velocities and impact parameters to determine the effective cross-section for capture. Finally, the simulations are then repeated for droplets hosting a single quantised vortex line. It is observed that the impact of the impurities induces large bending and twisting excitations of the vortex line, including the generation of helical Kelvin waves propagating along the vortex core. We conclude that Ar/Xe is captured by the quantised vortex line, although not in its core. Also we find that a He droplet, hosting a 6-vortex line array whose cores are filled with Ar atoms, results in added rigidity to the system which stabilises the droplets at low angular velocities. Our simulations involving droplets hosting quantum vortices open the way to further investigations on droplets hosting an array of vortices, involving multiple impurities.Dans cette thĂšse, nous Ă©tudions deux aspects de la dynamique d'impuretĂ©s atomiques interagissant avec des nanogouttes d'hĂ©lium superfluide (He) : la photo-excitation d'alcalins sur une nanogoutte et le dopage de nanogouttes contenant des tourbillons (vortex) quantiques avec des atomes de gaz rares. Nous utilisons la thĂ©orie de la fonctionnelle de la densitĂ© d'hĂ©lium ainsi que sa version dĂ©pendante du temps pour en faire la description thĂ©orique. Le premier aspect a Ă©tĂ© effectuĂ© dans le cadre d'une collaboration avec des expĂ©rimentateurs sur la photo-excitation du rubidium (Rb). Les alcalins sont une sonde trĂšs intĂ©ressante des gouttelettes d'hĂ©lium car ils rĂ©sident dans leur zone de surface, oĂč il a Ă©tĂ© prĂ©dit qu'un taux de condensation de Bose-Einstein de 100% Ă©tait possible en raison d'une densitĂ© infĂ©rieure Ă  celle de l'hĂ©lium superfluide. Nos simulations montrent que les Ă©tats excitĂ©s 5p et 6p dĂ©sorbent Ă  des Ă©chelles de temps trĂšs diffĂ©rentes, sĂ©parĂ©es par 2 ordres de grandeur (~100 ps et ~1 ps pour 5p et 6p respectivement). Ces rĂ©sultats sont en accord avec ceux de l'expĂ©rience pompe-sonde Ă  l'Ă©chelle femtoseconde qui a Ă©tudiĂ© la photodesorption d'atomes de Rb. Cependant, dans nos simulations, l'excitation vers 5pPi_{3/2} aboutit Ă  un exciplexe RbHe liĂ© Ă  la surface, contrairement Ă  l'expĂ©rience oĂč RbHe est Ă©jectĂ©. L'introduction de la relaxation de spin de Pi_{3/2} Ă  Pi_{1/2} nous a permis de rĂ©soudre ce dĂ©saccord, l'exciplexe RbHe ayant alors assez d'Ă©nergie pour dĂ©sorber. Le deuxiĂšme aspect concerne une investigation purement thĂ©orique inspirĂ©e par les travaux rĂ©cents de Gomez et Vilesov et al., oĂč les tourbillons quantiques Ă©taient visualisĂ©s en dopant les nanogouttes d'hĂ©lium avec des atomes d'argent, puis en les faisant atterrir en douceur (soft landing) sur un Ă©cran de carbone. Les images au microscope Ă©lectronique montrent de longs filaments d'agrĂ©gats d'atomes d'argent qui s'Ă©taient accumulĂ©s le long des coeurs des vortex. La formation de rĂ©seaux de tourbillons quantiques Ă  l'intĂ©rieur de nanogoutelettes dopĂ©es par du xĂ©non est Ă©galement mise en Ă©vidence par diffraction de rayons X qui montrent des pics de Bragg caractĂ©ristiques d'agrĂ©gats de xĂ©non piĂ©gĂ©s dans les coeurs des vortex. Nous avons d'abord Ă©tudiĂ© des collisions frontales entre un atome de xĂ©non, hĂ©liophile, et une nanogoutte de 1000 hĂ©liums, et comparĂ© les rĂ©sultats Ă  ceux d'une Ă©tude prĂ©cĂ©dente sur le mĂȘme processus avec le cĂ©sium (Cs), qui est hĂ©liophobe. Dans le cas de Xe une «boule de neige» se forme autour de lui quand il entre dans la nanogoutte, et il lui faut beaucoup plus d'Ă©nergie qu'au Cs pour qu'il puisse en ressortir. Quand il le fait, il emporte des hĂ©liums avec lui, contrairement au Cs. Nous avons ensuite simulĂ© des collisions entre Ar/Xe et des nanogouttes d'hĂ©lium superfluides pour diffĂ©rentes vitesses initiales et paramĂštres d'impact afin de dĂ©terminer leur section efficace de capture. Ces simulations ont ensuite Ă©tĂ© rĂ©pĂ©tĂ©es pour des gouttelettes hĂ©bergeant un vortex quantique. On observe que l'impact des impuretĂ©s induit de grandes dĂ©formations de flexion et de torsion de la ligne de vortex, allant jusqu'Ă  la gĂ©nĂ©ration d'ondes de Kelvin hĂ©licoĂŻdales qui se propagent le long du coeur du vortex. Ar/Xe est bien finalement capturĂ© par le vortex, mais pas dans son coeur. Nous avons Ă©galement dĂ©couvert que l'existence d'un rĂ©seau de 6 lignes de vortex dont les noyaux sont remplis d'atomes d'Ar donne une rigiditĂ© accrue Ă  la nanogoutte qui permet de stabiliser le systĂšme nano-goutte + vortex mĂȘme Ă  de faibles vitesses angulaires. Nos simulations impliquant des nanogouttes d'hĂ©lium comportant des tourbillons quantiques ouvrent la voie Ă  d'autres investigations sur des nanogouttes hĂ©bergeant un ensemble de vortex, en collision avec de multiples impuretĂ©s

    Self-consistent bounces in two dimensions

    Full text link
    We compute bounce solutions describing false vacuum decay in a Phi**4 model in two dimensions in the Hartree approximation, thus going beyond the usual one-loop corrections to the decay rate. We use zero energy mode functions of the fluctuation operator for the numerical computation of the functional determinant and the Green's function. We thus avoid the necessity of discretizing the spectrum, as it is necessary when one uses numerical techniques based on eigenfunctions. Regularization is performed in analogy of standard perturbation theory; the renormalization of the Hartree approximation is based on the two-particle point-irreducible (2PPI) scheme. The iteration towards the self-consistent solution is found to converge for some range of the parameters. Within this range we find the corrections to the leading one-loop approximation to be relatively small, not exceeding one order of magnitude in the total transition rate.Comment: 30 pages, 12 figure
    • 

    corecore